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Abstract. Early diagnosis of prostate cancer is very crucial to reduce the
mortality rate. Multi-parametric magnetic resonance imaging (MRI) can provide
detailed visualization of prostate tissues and lesions. Their malignancy can be
diagnosed before any necessary invasive approaches, such as needle biopsy, at
the risk of damage to or inflammation of the periprostatic nerves, prostate and
bladder neck. However, the prostate tissue malignancy on magnetic resonance
(MR) images can also be difficult to determine, with often inconclusive results
among the clinicians. With the progress in artificial intelligence (AI), research
on MR image-based lesion classification with AI tools are being explored
increasingly. So far, existing classification approaches heavily rely on manually
labelling of lesion areas, which is a labor-intensive and time-consuming process.
In this paper, we present a novel two-stage method for fully-automated prostate
lesion detection and classification, using input sequences of T2-weighted ima-
ges, apparent diffusion coefficient (ADC) maps and high b-value diffusion-
weighted images. In the first stage, a Mask R-CNN model is trained to auto-
matically segment prostate structures. In the second stage, a weakly supervised
deep neural network is developed to detect and classify lesions in a single run.
To validate the accuracy of our system, we tested our method on two datasets,
one from the PROSTATEx Challenge and the other from our local cohort. Our
method can achieve average area-under-the-curve (AUC) of 0.912 and 0.882 on
the two datasets respectively. The proposed approach present a promising tool
for radiologists in their clinical practices.
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1 Introduction

Prostate cancer is the second leading cancer-related cause of death in the male popu-
lation [1], with the estimate that 1 in 9 men in the US will be diagnosed with prostate
cancer in their lifetime [2]. The prostate-specific antigen (PSA) test is mainly used as an
upfront screening test for men without symptoms. Men with PSA level >4 would have
an increasing chance of prostate cancer, and will be followed-up by further tests, such
as MRI. mpMRI is commonly employed before tissue biopsy. Diagnosis with MRI
would reduce unnecessary biopsy by 70%. Daniel et al. [3] reported 486% increased
use of mpMRI from Oct 2013 to Dec 2015. Thus, a lot of prostate magnetic resonance
(MR) images require radiologists to interpret in current clinical routine. Recently, the
Prostate Imaging Reporting and Data System [4] guidelines were established to stan-
dardize and minimize the variation in interpreting prostate MRI. Geoffrey et al. [5]
observed variability in cancer yield across radiologists, with 24% of males who were
assigned a score of having a benign lesion turned out to have clinically significant
prostate cancer on biopsy. This false negative rate could vary from 13% to 60% among
radiologists. With the advances of deep learning in medical imaging, our goal is to
automate the diagnosis process by detecting and classifying prostate lesions with high
accuracy in a single framework.

There have been several works on prostate lesion classification with multi-
parametric MRI. Karimi et al. [6] proposed to combine hand-crafted features and
learned features for classifying malignancy of prostate lesions mpMRI images, which
led to an area-under-the-curve (AUC) of 0.87. Liu et al. [7] proposed XmasNet that
reformulates 3D mpMRI images as a 2D problem. To incorporate 3D information when
learning from 2D slices, they employed data augmentation through 3D rotation and
slicing. The approach attained a performance of 0.84 AUC.

However, these methods require labeling of lesion centroid, which is necessarily
done by clinicians. In a related research on prostate lesion detection and classification
in MRI, Kiraly et al. [8] used a deep convolutional encoder-decoder architecture to
simultaneously detect and classify prostate cancer, and they reached an average clas-
sification performance of 0.834 AUC. However, they applied a region of interest
(ROI) of roughly the same size to ensure only the prostate and its surrounding areas
were considered. Such simplification may lead to imprecision.

In this paper, we propose a novel two-stage framework for fully-automated prostate
lesion detection and diagnosis. In the first stage, prostate zone/contour in MR images is
automatically segmented. Secondly, an analytical framework is implemented to detect
and classify malignancy of prostate lesions. The major work contributions are: (i) A
Mask R-CNN [9] model is trained to segment/pinpoint a smaller ROI that contains all
the lesion candidates. (ii) A weakly supervised deep neural network is developed to
process the detection/classification in a single run. (iii) Detailed validation is conducted
on two datasets, namely PROSTATEx Challenge [10] dataset and our local cohort.
Classification performance is also compared with the state-of-the-art approaches.
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2 Methods

Figure 1 illustrates our proposed two-stage automatic framework. We applied an object
detection method, Mask R-CNN, to train a prostate segmentation model for T2-
weighted images that show tissues in high contrast and brightness. The model outputs a
smaller size image that contains the prostate ROI. With coordinate transformation,
prostate regions in ADC maps and high b-value diffusion-weighted images become
available. Next, the prostate ROI will act as input to a deep neural network (DNN),
outputting lesion areas and classification results in one single feedforward pass.
Malignancy of the classified lesions will then be determined through the ensemble
learning of images of different input sequences.

2.1 Mask R-CNN for Automated Prostate Structures Segmentation

Prostate lesions detection can be difficult, as the lesions are small relative to the entire
image size. Thus, identifying the prostate ROI is crucial to enable more accurate and
effective lesion detection. Mask R-CNN object detection approach relies on generated
region proposals, each of which outputs a class, bounding box, and a mask. Multi-scale
features are extracted from various layers, which provide more powerful information to
segment specific objects at various scales. These are particularly useful for our case, as
the prostate sizes among patients can vary. To train this Mask R-CNN model, we
employ an online prostate segmentation dataset, along with well labelled masks, which
were released by the Initiative for Collaborative Computer Vision Benchmarking
(I2CVB) [11]. The trained model can narrow the entire MR images down to the
prostate ROI only, thus facilitating the subsequent detection and classification process.

Fig. 1. Schematics of the proposed automated prostate lesion detection/classification.
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2.2 Weakly Supervised Deep Neural Network for Prostate Lesion
Detection and Classification

In the prostate classification datasets used by existing approaches, only lesion centroids
are located, but not their exact outlines. Previous work [8] attempted to resolve this
issue by applying lesion labels with identical gaussian distribution at each lesion point.
However, this approach could not account for variations in lesion sizes. To this end, we
employ a distance regularized level set evolution [12] to generate weak lesion labels.
Provided with the lesion centroids, this method can be applied to edge-based active
contour model for weak lesion labels.

Given the prostate region identified at stage one, we employed our novel weakly
supervised DNN for simultaneous lesion detection and classification based on the weak
masks and classification labels. The network comprises three key components, namely
encoder, decoder and classifier. The encoder consists of five groups of convolutional
layers and max-pooling layers while the decoder contains five upsampling layers. The
encoder and decoder are linked with skip connections between their corresponding
layers. The decoder is trained to produce lesion masks, indicating the location of pre-
dicted lesions. The predicted weak lesion mask, together with prostate region and
features extracted from the encoder are then reused by the classifier. We hypothesize that
the additional lesion and prostate structure masks can act as a form of attention map to
guide the classifier, leading to the improved classification performance. To predict the
malignancy of lesions, the classifier itself also contains five groups of convolutional and
max-pooling layers with two fully connected layers. A composite loss function is
applied, which combines the lesion segmentation loss and classification loss, to train the
entire network. For each sample, the classification loss LC can be designed as:

LC¼� y log cðxÞ � ð1� yÞ log 1� cðxÞ½ � ð1Þ

where x 2 R
w�h, y 2 R
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the data sample; w and h are the width and height of input images. Lesion segmentation
loss LS can be described as:
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where, M 2 R
w�h and SðxÞ 2 R

w�h, respectively, denote mask label and output mask
of the lesion; Mi;j and Si;jðxÞ represent pixel values of their corresponding masks in the
ith column and jth row of matrix. The parameter e is a numerical constant to avoid
division of zero and ensure numerical stability. The total loss function LT is also
weighted with two coefficients, kC and kS as below. Note that the Adam [13] optimizer
is applied to train the network with a learning rate of 10�6.

LT ¼ kCLC þ kSLS ð3Þ
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3 Experimental Results

3.1 Prostate Structures Segmentation

In the first stage, 646 slices of T2-weighted images from 21 patients scanned with 1.5-
T (GE) scanner and 15 patients scanned with 3.0-T (Siemens) scanner were extracted
to train and validate our prostate segmentation model. We used a 7:2:1 split ratio for the
slices extracted from the I2CVB dataset for training, validation and testing. Data
augmentation was performed on the training sets by random rotation of
[±30°, ±60°, ±90°]. All the inputs were resized to 512 � 512 pixels before feeding in
the Mask R-CNN model. Learning rate is set to 10−3. We trained on two GPUs with a
batch size of 4 for 200 epochs. The model with the best dice coefficient on the
validation set is chosen as final model, with results on the test split reported. Figure 2a
shows a sample of segmentation result. As shown in Table 1, we have compared our
results with other methods using mean intersection over union (IoU). These show that
Mask R-CNN can achieve higher IoU in segmenting prostate and central gland. Our
segmentation model can obtain prostate regions on T2 sequences of the two datasets
(Fig. 2b and c).

Fig. 2. Samples of automated prostate segmentation with Mask R-CNN. (a) Results for test split
of I2CVB dataset. The ground truth is indicated in green, and the predicted area is in yellow.
Predicted prostate area of PROSTATEx Challenge dataset (b) and our local cohort (c). (Color
figure online)
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3.2 Prostate Lesion Detection and Classification

In the second stage, our proposed weakly supervised network is trained and validated
on PROSTATEx Challenge dataset (330 lesion samples, 76 malignant and 254 benign)
and our local cohort (74 lesion samples, 51 malignant lesions and 23 benign lesions).
We used GLEASON score (malignant for values � 7) to label lesion malignancy on
both datasets. We trained two sets of models on these two datasets. Each set of models
consists of models trained on three sequences, namely T2-weighted images, ADC maps
and high b-value diffusion-weighted images. All the segmented prostate regions were
prepared for both datasets in stage one. Data augmentation was applied to the training
data with random rotation of [±3°, ±6°, ±9°, ±12°, ±15°]. The image sizes were
then scaled to 224 � 224 pixels for training. We conducted 5-fold cross validation
experiments on both datasets. Through repeated experimental trials, parameters weights
kC and kS were both set to 1, with e set to 10−5. The final classification results and
AUC were obtained through ensemble learning from all three sequences.

Table 1. Comparison of Mean IoU on I2CVB dataset with other methods.

Methods Prostate Central gland Peripheral zone Lesion

Ruba Alkadi - M1 [14] – 0.673 0.563 0.677
Ruba Alkadi - M2 [14] – 0.657 0.599 0.679
Mask R-CNN (ours) 0.843 0.781 0.516 0.405

Fig. 3. Samples of result for lesion detection of T2-weighted images. Green spots indicate the
given lesions centroid. (a) Input of raw prostate region. (b) Weak lesion mask obtained from level
set method. (c) Predicted lesion area contoured by yellow. (Color figure online)
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Figure 3 shows the results of lesion detection in T2 sequences. Figure 4a and b
illustrate the final average receiver operating characteristic curve (ROC curve) on the
two prostate lesion datasets with our proposed approach. For PROSTATEx Challenge
dataset, our model outputs the average AUC of 0.912 with ensembled input sequences
of ADC maps and T2-weighted images, outperforming the other two existing methods
that individually combine hand-craft features and learned features (AUC of 0.870) [6],
and encoder-decoder architecture (AUC of 0.834) [8]. For our local cohort, the average
AUC of 0.882 is obtained with ensemble learning over input sequences. Moreover, we
compare the results without pre-segmentation. Figure 4c and d indicate significantly
lower AUC on the two datasets with the non-segmented/cropped image as input,
showing the crucial role of pre-segmentation in this detection/classification framework.

Fig. 4. Average AUC results on the two datasets: PROSTATEx Challenge (Left column) and
our local cohort (Right column). AUC results (a) and (b) are input with prostate region segmented
by Mask R-CNN models. Lower AUC can be observed in (c) and (d) without the segmentation.
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4 Conclusion

This paper proposes a novel framework for fully-automated prostate lesion detection and
diagnosis in MR images. Experiments on PROSTATEx Challenge dataset and our local
cohort achieve a promising average AUC of 0.912 and 0.882 on their validation set
respectively. The resultant efficacy is comparable to the first (champion) and second
highest in AUC in PROSTATEx challenge [7], which achieved 0.87 and 0.84 on the test
set, respectively. Our proposed method is extensible to other structures demanding for
similar lesion diagnosis using MRI. For future work, we will extend the framework 3D
MRI. To improve robustness, we will also attempt to consider using specific regions,
such as segmented central gland and peripheral prostate zones for classification.
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